A Robust Algorithm for Estimating Surface Fractional Vegetation Cover from Landsat Data
نویسندگان
چکیده
Fractional vegetation cover (FVC) is an essential land surface parameter for Earth surface process simulations and global change studies. The currently existing FVC products are mostly obtained from low or medium resolution remotely sensed data, while many applications require the fine spatial resolution FVC product. The availability of well-calibrated coverage of Landsat imagery over large areas offers an opportunity for the production of FVC at fine spatial resolution. Therefore, the objective of this study is to develop a general and reliable land surface FVC estimation algorithm for Landsat surface reflectance data under various land surface conditions. Two machine learning methods multivariate adaptive regression splines (MARS) model and back-propagation neural networks (BPNNs) were trained using samples from PROSPECT leaf optical properties model and the scattering by arbitrarily inclined leaves (SAIL) model simulations, which included Landsat reflectance and corresponding FVC values, and evaluated to choose the method which had better performance. Thereafter, the MARS model, which had better performance in the independent validation, was evaluated using ground FVC measurements from two case study areas. The direct validation of the FVC estimated using the proposed algorithm (Heihe: R2 = 0.8825, RMSE = 0.097; Chengde using Landsat 7 ETM+: R2 = 0.8571, RMSE = 0.078, Chengde using Landsat 8 OLI: R2 = 0.8598, RMSE = 0.078) showed the proposed method had good performance. Spatial-temporal assessment of the estimated FVC from Landsat 7 ETM+ and Landsat 8 OLI data confirmed the robustness and consistency of the proposed method. All these results indicated that the proposed algorithm could obtain satisfactory accuracy and had the potential for the production of high-quality FVC estimates from Landsat surface reflectance data.
منابع مشابه
Estimating Land Surface Temperature in the Central Part of Isfahan Province Based on Landsat-8 Data Using Split- Window Algorithm
Land surface temperature (LST) is used as one of the key sources to study land surface processes such as evapotranspiration, development of indexes, air temperature modeling and climate change. Remote sensing data offer the possibility of estimating LST all over the world with high temporal and spatial resolution. Landsat-8, which has two thermal infrared channels, provides an opportunity for t...
متن کاملComparative Assessment of Two Vegetation Fractional Cover Estimating Methods and Their Impacts on Modeling Urban Latent Heat Flux Using Landsat Imagery
Quantifying vegetation fractional cover (VFC) and assessing its role in heat fluxes modeling using medium resolution remotely sensed data has received less attention than it deserves in heterogeneous urban regions. This study examined two approaches (Normalized Difference Vegetation Index (NDVI)-derived and Multiple Endmember Spectral Mixture Analysis (MESMA)-derived methods) that are commonly ...
متن کاملThe Study of Effect of Vegetation Cover Factor on the Water Erosion Case Study: Razin Basin
One of the important parameters, that reduce negative influence of the other known parameters, is cover vegetation. In this study were estimated cover vegetation influence in soil erosion of Razin basin in Kermanshah province that is our study area. The first step is preparation map of NDVI obtained & category of cover vegetation by the Landsat TM data. Then Revised Universal Soil Loss Equation...
متن کاملسنجش اثرات سبزینگی گیاهی در تحولات فضایی شدت جزیره حرارتی سطح کلانشهر تهران با استفاده از تصاویر ماهوارهای LANDSAT8 و ASTER
The simplest definition of urbanization is that urbanization is the process of becoming urban. Urban climate is defined by specific climate conditions which differ from surrounding rural areas. Urban areas, for example, have higher temperatures than surrounding rural areas and weaker winds. Land Surface Temperature is an important phenomenon in global climate change. As the green house gases in...
متن کاملEstimation of land surface temperature over Delhi using Landsat-7 ETM+
Land surface temperature (LST) is important factor in global change studies, in estimating radiation budgets in heat balance studies and as a control for climate models. The knowledge of surface temperature is important to a range of issues and themes in earth sciences central to urban climatology, global environmental change, and human-environment interactions. In the study an attempt has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017